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The theorem of Gutman et al. (1983) is applied to calculate the number of spanning trees in the carhon-carbon
connectivity-network of the recently diagnosed Cy-cluster buckminsterfullerene. This “complexity” turns out
1o be approximately 3.75 x 10® and it is found necessary to invoke the device of modulo arithmetic and the
“Chinese Remainder Theorem” in order to evaluate it precisely on a small computer. The exact spanning-
rree count for buckminsterfulierene is 375 291 866 372 898 816 000, or, 2% x 3' x 5 x 11° x 19 A “ring-
current” caleulation by the method of MecWeeny may be based on any desired one of this vast number of

spanning rees.

INTRODUCTION

In the short time since it was originally reported,' in
1985, the cluster of 60 carbon atoms that is various-
ly becoming known as “icosahedral Cg,” “football-
ene,” “soccerballene,” and “buckminsterfullerene”
(Fig. 1) has been the ohject of intense theoretical
interest 2

References 2-22 are merely a representative se-
lection from the many investigations so far pub-
lished. which range from assessments of the species’
stability’ to the number of Kekulé structures that
may be devised for it.**** Jts predicted magnetic
properties have been especially thoroughly stud-
ied.*1'* Underlying the latter is the graph-theoreti-
cal concept of the several spanning frees™® latent
in the carbon-atom skeleton that features in the
structural formula (Fig. 1) of the C4 system. The
idea of a spanning tree is inherent in McWeeny's
now-classic method®™® of calculating n-electron
“ring-current” magnetic-properties of conjugated
molecules. These developments have coincided with
recently revised attention, in the microscopic con-
text of molecules, to an old problem initiated, at the
macroscopic level, by Kirchhoff, midway through
the last century”—namely, that of estimating the
number of spanning trees in an electrical network.
In 1983, Gutman, Essam and one of the present
authors™ proved a new theorem for counting the
spanning trees of a molccular graph. This theorem,
which is valid for any {graph-theorctically) planar
graph, requires the development of a determinant
only of the order of the number of rings in a given
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conjugated molecule, rather than knowledge of the
determinant or eigenvalues of a matrix approxi-
mately of the order of the number of atoms partic-
ipating in its conjugation, as previous theorems for
spanning-iree enumeration™" had done. Thus, in the
case of naphthalene, for example, a mere 2 x 2
determinant has to be evaluated when the theorem
of Gutman et al.* is applied, which is to be compared
with the one of order @ x 9 that has to be expanded
when the so-called “matrix-tree” theorem™# is used.
Furthermore, if the late D.A. Waller’s elegant exten-
sion™* involving the cigenvalue spectra of “row-
regularized” graphs were to be invoked in order to
count the spanning trees in naphthalene, a 10 x 10
matrix would have to be diagonalized® Now it is
well known to mathematicians (e.g., reference 38)
that any result proved for a planar graph is also valid
when that graph is embedded on the surface of a
sphere. Because of this, O'Leary and one of the pres-
ent authors subsequently pointed out™ to potential
chemical users that the theorem of Gutman et al.,®
announed in 1983, two years before icosahedral Cg,
was first reported, is in fact also applicable (o that
novel species. Accordingly, in the present article, we
use this theorem™ in order to obtain a precise count
of the number of spanning trees in buckminsterful-
lerene. The recent remarkable synthesis® of €y, in
macroscopic quarntities, and the consequent availa-
bility of its "C-NMR spectruin,*' make this especially
titnely.

SCHEME OF CALCULATION

According to the theorem of Gutman et al,” the num-
ber of spanning trees in a network—sometimes
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Figure 1. The carbon-carbon connectivity of icosahedral
Uy {buckominsterfullerene).

called its “complexity "—is given by [B* - A*|, where
the (n* x n*) matrix A* is an adjacency matrix of
the inner dual of the network (graph) in question
and B* is an entirely diagonal (n* X n*) matrix such
that its {7, i) element (1 = 1,2, ....,n") is equal to
the number of edges possessed by that face of the
original graph which is in 1 - 1 correspondence with
vertex 7 of the inner dual--that inner dual having,
in all, »* vertices. (The reader is referred to refer-
ences 33 and 39 for the definitions of “adjacency
matrix” and “inner dual,” in this context). This pro-
ress can be shown™ to be equivalent to taking any
cofactor of the analogously defined (equi-cofacto-
rialy matrix (B~ — A7), of dimension (r* + 1) X
{#" <+ 13, pertaining to the complete (“geometric’)
dual of the original network. B* and A" are here
defined similarly as for B* and A”, but their orders
are appropriate to the complete {“geometric™) dual,
which comprises (n* + 1) vertices (including the
so-called “infinite-face” vertex), rather than the inner
dual (which has only n* vertices, the “infinite-face”
vertex—and all edges incident upon it—being, by
definition, suppressed, in the inner dual ™)

The required matrix (B* — A*) for the complete
dual of buckminsterfullerene was in practice ob-
tained by the following procedure:

i. The 12 pentagons and 20 hexagons that feature
in the structural formula of icosahedral Cy, (Fig.
1) were first labeled 1 to 32 (inclusive). It was
found to be a conceptual help actually to carry
out this labeling process, physically, on a stan-
dard, European soccer-ball, but for illustrative
purposes here, it is convenient to depict a Schle-
gel diagram of the three-dimensional system, sim-
iflar to the one devised by Randi¢ et al® The
Schiegel diagram, and the numbering system we
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used, is shown in Figure 2. it may be noted that,
on this scheme, the “infinite face” is one of the
pentagons, labeled “32." For our purposes, any
arbitrary labeling of the polygons on the buck-
minsterfullerene surface would in principle have
been equally as satisfactory as any other. How-
ever, we felt disposed to effect the numbering
process in such a way that diametrically opposite
polygons were assigned numerical values that

added to 33: (1 opposite 32, 2 opposite 31, 16

opposite 17, ete.) As will be seen, this choice had

pleasant repercussions for the symmetry of the
resuiting (32 « 32) matrix (B* — A™).

2. The matrix (B* — A™) for the complete (“‘geo-
metric”®#) dual of buckminsterfullerene could
then immediately be written down, as follows:
a. if the face labeled 1 be a pentagon, the (4, i)

element of (B™ — A*)is b

b. if the face labeled i be a hexagon, the (4, 1)
element of (B — A™) is 6;

c. if the face labeled ¢ should have an edge in
common with the face labeled 7 (#£1), the (4, 7)
and (4, ©) elements of (B* — A*) areboth —1;
otherwise, all (¢, ) elements of (B* — A™")
(i # j) are zero.

The matrix that results from this process is illus-
trated in Figure 3. It will be seen that, in addition to
the symmetry that it displays about its leading di-
agonal—which, from the definition of the matrix
(just given}, it must possess, whatever labeling
scheme be adopted for the faces—it also manifests
reflectional symmetry about the other (secondary)
diagonal (the one running from the bottom left to

Figare 2. Schlegel diagram for buckminsterfullerene,
with the numbering scheme adopted for the faces (and
hence for the vertices of the inner dual and the complete
{"geometric”} dual; note that, in the latter, the "infinite-
face” vertex—in 1 — 1 correspondence with one of the
pentagons-—is here labeled 32.)
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the top right of the matrix); this latter reflectional
symmetry arises solely as a result of our (arbitrary)
choice, referred to in 1 above, of labeling the penta-
gons and hexagons in such a way that diametrically
opposite faces have numbers assigned to them that
add to a constant value {33},

EVALUATION OF A COFACTOR OF THE
EQUI-COFACTORIAL MATRIX (B* - A')

The CDC Cyber 830 computer at the University of
Porto was used to make a preliminary estimate of
the (32, 32)-cofactor {and, as a check, the (13, 14)-
cofactor) of the matrix (B* — A”) for buckmin-
sterfullerene (Fig. 3); this revealed that the com-
plexity we were seeking was of the order of 3.75 x
10%, but only 15 significant. figures were printed, of
which (according to comparison of the supposedly
equal (32, 32)- and (13, 14)-cofactors) about 13 or 14
were reliable.
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The matrix (B* — A") for the complete ("geometric™) dual of buckminsterfullerene.

In Canterbury, where rather more modest com-
puting facilities were available (2 BBC Micro Per-
sonal Computer), some alterations were made (see
Appendix 1) to enable storage of more significant
figures. A program was also written (Appendix 2) to
evaluate a determinant by a method involving only
integer scaling-factors, which reduced a known mul-
tiple of it to the determinant of an upper-triangular
matrix. Even so, when these measures were applied
to the preblem in hand, the intermediate numbers
that resulted were hopelessly large, and so we in-
troduced the device of using modulo arithmetic and
a nice application of a result in number theory
known as the “Chinese Remainder Theorem” (see,
for example, reference 42 and Appendices 3 and 4)
in an attempt to overcome these difficulties. The
program was first modified so that all figures were
given to a certain prespecified, (positive integral)
modulus. The aforementioned “Chinese Remainder
Theorem” assures that if a number be known to two
coprime moduli, it may be found modulo the product
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Table I.  The (32, 32)-cofactor of the matrix (B~ — A"
(Fig. 3} for the complete (“geometric™™) dual of buck-
minsterfullerene (Fig. 1), evajuared to each of the prime
moduli from 31 10 83, inclusive.

{32, 32)-Cofactor of (B~ — A"),
Modulus (n)

moduio #

3 i 13
a7 20
il 33
43 20
47 43
53 34
35 7
61 15
57 7
il 52
i3 32
% 64

(42)

(63

"These values are needed only later in the analysis—see
Conchuding Remarks.

of those two moduli” (The reader interested in the
details of this is referred to our Mathematical Ap-
pendices 3 and 4). The (32, 32)-cofactor of (B~ -
A7y (Fig 3 was, accordingly, computed in 14 dif-
ferent coprime moduli—all the prime numbers from
31w 89 {inclusive)—yielding the results that are
given in Table 1. By repeatedly combining all the
modulo forms in steps (see Appendix 4), the cofactor
was calculated to an ever-increasing modulus. As
soon as the current working-rnodulus exceeded the
approximately known value of the desired cofactor
itself (and 31 »x 37 x 41 x ..... X 79 is already
greater than 3.75 X 10%, without the need for the
results module the other two prime factors available
from Table 1), the answer arising from this process
of continually combining the moduli represented the
exact value of the cofactor we were seeking to eval-
uate, This value—and, hence, the required complex-
v of buckminsterfullerene—is

375 291 866 372 898 816 000
or. factorized into powers of prime numbers,*
2%y 31 x 57 K 11° x 198

This result was checked by calculating several
other cofactors of (BT — A*) (Fig. 3), all of which
agreed with the value just stated for the (32, 32)-
cofactor.

FINAL COMMENTS ON
“RING-CURRENT” CALCULATIONS

We conclude by drawing attention to the fact that
the method of McWeeny® 7! requires just one span-
ning tree on which to base a calculation of the
~-electron “ring-current” intensity in a given conju-

gated system {usually expressed” ¥ as aratio to the
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corresponding “ring-current” intensity calculated, by
the same method, for benzene). The present inves-
tigation has confirmed that, in the case of icosahed-
ral Cy, (Fig. 1), this sole, required spanning-tree may
be chosen from a truly vast number—ca. 3.75 »x 102,
If the MeWeeny unitary transformation®=#4 is used
in the calculation, it must be based on a spanning
tree that is “unbranched” (i.e., one that represents a
Hamiltonian® path through the molecular-graph in
question). If the Gayoso-Boucekkine unitary trans-
formation,”**7 is invoked, however, any spanning
tree, including a branched one > may be used. The
“ring-current” intensities that result from a compu-
tation based on any of these numerous spanning-
trees will, however, be entirely independent of
which particular spanning-tree is favored for selec-
tion?*3 Now it has already been pointed out by
several authors™ ¥ that precisely because a “ring-
current” calculation by the McWeeny method® 3410
may be based on any spanning tree extant within
the network under study, and yet the “ring-current”
intensities eventually calculated must finally be in-
variant to such a choice, it follows that there must
be many more relations™* among the imaginary
bond-bond polarizabilities (and the Coulson bond-
orders) that arise in a McWeeny “ring-current”
calculation®*"* than there are among the bond or-
ders and the real bond-bond polarizabilities, origi-
nally defined by Coulson and Longuet-Higgins.* This
is true, as was pointed out by McWeeny In his pi-
oneering paper,” even for a very small unsaturated
system like naphthalene with only two rings and 10
carbon atoms participating in its conjugation. In the
case of buckminsterfullerene (Fig. 1), it can, there-
fore, be concluded with confidence that only a tiny
proportion of its (*C, + 90) = 4095 mutual- and
self-bond-bond polarizabilities, and its 80 bond or-
ders, will in fact actually be distinot.

CONCLUDING REMARKS

We might observe in passing that the original (“brute-
force™) computer-determination of the complexity,
carried out in Porto in order to gain an order-of-
magnitude estimate, could have been obviated by
the following reasoning: The Schlege! diagram for
the buckminsterfullerene structure (Fig. 2) com-
prises 90 bonds and 31 rings; now, the number of
“rings” in a molecule (in the chemical sense of that
term) is the same as the number of “fundamental
circuits” in its molecular graph.®* Furthermore, it
is well known®#-¥ that if a graph has N fundamen-
tal circuits, precisely N edges (bonds) have to be
removed from the parent graph in order to obtain a
spanning tree. In the case of Cg, therefore, 31 bonds
have to be removed, from among the 90 available,
to form a spanning tree®; hence, “Cy, = 130 x 10%
is an upper bound for the mumber of spanning trees
(since, of course, removal of an arbitrary combina-
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tion of 31 bonds does not necessarily give rise to a
spanning tree). The modulus to which we previ-
ously knew the compiexity (the product of all the
prime factors in Table I up to and including the 83)
was ca. 4.13 X 10%. Since 89 x 4.13 x 10% = 368
x 10%, it can be seen that doing just one more cal-
culation of the required cofactor (to a modulus of
the next highest prime number, §9—sece Table I}
would have been sufficient to obtain the cofactor to
a composite modulus exceeding the upper bound
just stated (™C,;), and hence to yield the true
value of the complexity, without the need for the
initial approximate computer-determination of this
quantity.

The parts of this work carried out in Porto were sup-
ported by LN.I.C. (Lisboa).

APPENDIX 1: STORAGE AND PROCESSING
OF NUMBERS AS ARRAYS

As explained in the text, the numbers generated in
the calculations described soon exceeded the com-
puter's limit of accuracy (eight significant figures).
This problem was solved by storing numbers not as
integer variables, but as arrays. Thus

a = 1234567890
would become
a{3) = 0012, a(2) = 3456, a(l) = 7890.

The arrays could have stored one digit in each
element, but that would have been wasteful of the
available eight-digit accuracy. Storing as four-digit
blocks is equivalent to writing the numbers in base
10,000. All normal arithmetic now becomes an “ele-
ment-wise” operation, such as would be carried out
on paper. Routines were written to perform long
multiplication, addition, and subtraction in this way.
Within the capacity of the machine, the suite of pro-
grams could now operate with complete accuracy
in numbers up to 160 elements—that is, 640 digits;
(the actual problem, however, eventually required
only 21 digits—or, on the system just described, six
elements.}

An Example of Multiplication
a X b, with @ = 12345678 and b = 876564321

First

a(2) = 1234, a(1) = 5678,
b(2) = 8765, b(1) = 4321

BROWN ET AL.

Then
8765 4321
1234 5678 X
2453 4638
4976 7670 0000

B33 2114 0000
1081 6010 0000 0000

1082 1520 2237 4638

ans(4) = 1082, ans(3) = 1520, ans(2) = 2237, ans(1)
= 4638. Hence, final answer = 1082152022374638.

As described in the text, by looping through the
above algorithm enough times to combine all the
moduli in this way, we were finally able to obtain
the reported 21-digit complexity of buckminsterful-
lerene.

APPENDIX 2: SCHEME FOR EVALUATION
OF THE INTEGRAL DETERMINANT

To use only a small computer to evaluate precisely
an integral determinant, A, of large order, such as
the one described in the text, it is convenient to
reduce a known, integral multiple of it, by row op-
erations (as in the “pivotal condensation” method,*
but avoiding division), to a “triangular” determi-
nant-—that 1s, one with only zeros above (or below)
its principal diagonal—and thus to obtain an equa-
tion of the form

al = b

Here, the integer b is the product of the elements
along the leading diagonal of the resulting triangular
determinant, and the integer a is the product of the
scaling factors that have been used in the row op-
erations that reduced the original determinant to its
corresponding triangular-form. Then, if working is
carried out to a modulus, m, the multiplicative in-
verse of a (that is, ¢, say, such that ¢ X ¢ = ] (mod
m}) is found by systematic trial-and-error and so, to
moduius m,

A=ecxb

APPENDIX 3: “THE CHINESE
REMAINDER THEOREM”

in all that follows, all letters stand for integers; Greek
letters represent integers of which the values need
not be known.

Given x = a (mod p) and x = b (mod ¢), then if,
and only if, p and g are coprime (i.e., (p,q) = 1}, we
can find 4 and g such that

Ap + ug = 1
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and so, from

+ gp
&g

e &
x b -

deduce that
pugr + ipx = pga + spb + wpg
and hence that
r = uga — +pb {mod pg)
Conversely, from this congruence, it follows that
X =a — spa + oapb + wpg
and so0
xr=a{mod p}
and, simniiarly,
r=&{mod g

i.e., the two initial congruences {¥ = a {mod p) and
x=b(mod g)) © 5 = gga — ~p& {mod pg).

APPENDIX 4: AN APPLICABLE ALGORITHM

Of p, g such that (p, g) = 1. let {for computational
speed) p be the greater. Form in succession a, (@ +
pLie + 2p), ... (a + {g — Ly} each modulo g {in
the range g > (a = ip) = {.) One of these. and only
one, is equal to b (as thev are all different and form
a complete set of residues, mod g). it being assumed
that ¢ > b = 0. Suppose it is {# + ip). Clearly, this
is congruent to a {mod p). It is also congruent to
b (mod g) by its specification. Therefore, it is the
“uga + Apb (mod pg}” of Appendix 3.

A repetition of this process leads to a sufficiently
large modulus pgr .... The strategy adopied in the
computation was thus to combine the first two mod-
uli, 31 and 37 (see Table I), and then to combine this
modulus, 1147, with the next one, 41, and so on until
the required determinant was obtained modulo
(31 » 37 x 41 x .... x 79), which was safely
greater than its approximately known value.
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¢. Reference 4Zb gives the context of the problem
solved by Sun-Tsu (third century A.D.}, who really gave
a ‘rule of thumb” for solving x = a (mod 3), x = b
{mod 5), x = ¢ (mod 7). The Indian Brahmagupta (sev-
enth century A.D.} and then Ibn al-Haitam (ca. 1600
AD) posed more complicated problems.** The simple
proof given by Dickson in reference 42a needs an al-
gorithm to solve ya = 1 (mod m) where ¢ is an un-
known, and a and m are known and coprime (i.e., the
greatest common divisor of (a, m) = 1); this can be
done by continued fractions or the Euclidean Aigo-
rithm.## d, RB.M. is grateful to his colleague the
Revd. Canon PF. Johnson for very helpful discussion
on this point. e, PF. Johnson, Personal correspondence
to R.B.M., April 14, 1890,

We noted with some amusement (though we do not
claim it to have any particular significance!) that when
the complexity of icosahedral Cy, is expressed in the
form

27 x 3 x5 x 11°P x 19,

the sum of the bases, {2 + 3 + 5 + 11 + 19}, is equal
to the sum of the powers, (25 + 4 + 3 + 5 + 3),
both being 40.
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This could also be looked at in the following way,
which may be intuitively rather more obvious: If | V,
and £ be the number of faces, vertices, and edges,

respectively, Euler’s relation is
F+V=FE+2
and s0,
E-F-1N=V-1

It is evident that any spanning tree (which ceontains
all V vertices of the network, but no circuits) must
comprize ¥V — 1 edges; an upper bound to the number
of spanning trees is, therefore, ¥C, | which, by the
above, amounts to *Cg_,..,, = #C,_,. Thus, for icosa-
hedral Cy, with £ = 90 and F = 32, this is ®C,,, as
asserted in the text.
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